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Conically similar viscous flows. Part 2. 
One-parameter swirl-free flows 

By R. PAULL AND A. F. PILLOW 
Department of Mathematics, University of Queensland 

(Received 2 February 1984 and in revised form 31 December 1984) 

It was shown in Part 1 of this series that in swirl-free flow there are three different 
types of axial causes of steady conically similar viscous flow. The three corresponding 
swirl-free one-parameter families of exact solutions to the Naviel-Stokes equations 
are presented and analysed here in terms of the basic conservation principles for 
volume and ring circulation. The simplest is the irrotational flow generated by a 
uniform distribution of volume sources along a half-axis. A second, independent, 
one-parameter family of solutions is provided by Landau’s (1943) solution, where the 
second moment of ring circulation about the axis is produced at the origin at  a finite 
constant rate. Fresh insight into the nature of this flow is gained by separating and 
comparing the roles of the diffusion and convection terms in the flux vector for ring 
circulation. A similar analysis is applied to the remaining independent one-parameter 
family caused by an antisymmetric (about the origin) conically similar axial 
distribution of the singularity in Landau’s solution. This simple new family of exact 
solutions is characterized by opposed jets neighbouring the axis of symmetry. When 
the axial jets are directed inwards, they always erupt into an emergent axisymmetric 
jet normal to the axis of symmetry. Solutions fail to exist, however, for sufficiently 
strong axial jets directed outwards. 

1. Introduction 
It was shown in Part 1 of this series of papers (Pillow & Paul1 1985, hereinafter 

referred to as I) that the swirl-free axisymmetric flow of an incompressible viscous 
fluid is governed by two basic conservation principles - conservation of volume and 
conservation of ring circulation. In such flows, in terms of cylindrical polar coordinates 
(qn, $), the velocity field u(r, t) can be described in terms of a scalar stream function 
$ in the form 

1 
u = - [$,n-$,t3]. (1.1) 

0 = rr@, (1.2) 

ai 
-+div J = -4nvZ6(a), (1.3) at 

where (I (2.4)) J =  1~-21q,-~Vl (1.4) 

CT 

In swirl-free axisymmetric flow the vorticity w (i.e. curl u)  is purely azimuthal, and 
is given by 

where 1/2n is the ring-circulation volume density. Conservation of ring circulation 
requires (I (2.3)) that 

and (I (2.5)) q - -, Vt3 divq, = 2nv6(a). ,- CT 



344 R. Paul1 and A. F. Pillow 
(Here I (2.5), for example, refers to equation (2.5) of Part 1.) In  terms of $, 1 is given 
by I (1.14) in the form 1 

$kxx-- $.,+$.,, = -a% (1.6) 
d 

Conically similar viscous flows were defined in I as the special class of axisymmetric 
flows in which the parameters characterizing the flow causes are of the same 
dimensions as powers of the kinematic viscosity u. For such flows, dimensional 
arguments require that $ and 1 take the form urf(p) and ug(p)/r3 respectively 
(I (1.15), (1.16)), where ( r , 6 )  are polar coordinates in an axial half-plane and 
cos6 = p = x / r .  It follows from (1.6) that g = -f". In steady swirl-free conically 
similar flow, replacement of g by - f" in I (3.5) requires, after three integrations, 
that f satisfy (I (4.1)) 

(1.7) 

where A, B and C are constants, which can be determined in terms of the strengths 
of the basic flow causes. 

It was shown in $4 of I that the solutions of (1.7) can be characterized quite simply 
in terms of four independent axial causes. This present paper analyses in detail the 
three non-redundant and essentially different types of one-parameter swirl-free 
conically similar viscous flows that result when all but one of the independent axial 
causes are eliminated. 

This set contains a new family of exact nonlinear Navier-Stokes solutions 
generated by an antisymmetric distribution of axial component of moment of whirl 
sources about the origin. The family describes two opposed jets directed along the 
axis of symmetry. When the jets are directed inwards, the outer flow is parallel to 
the axis of symmetry and discharges into an axisymmetric radial jet, normal to this 
axis. The radial jet erupts from the origin, where the axial jets collide. When the 
opposed jets are directed outwards, the outer flow is directed normal to the axis of 
symmetry, prior to its entrainment by the jets. As the strength of these jets increases, 
ring circulation, generated on the axis, is confined to smaller and smaller conical 
neighbourhoods of the axis. Unbounded solutions finally result once a critical 
strength is reached. These jet flows are investigated analytically in $4 along with their 
asymptotic behaviours for strengths that are large, small and just subcritical. 

The flows generated by a uniform half-line source of volume and a point source 
of axial component of moment of whirl complete the set of basic one-parameter 
swirl-free conically similar viscous flows in accord with the classification provided in 
$4 of I. The first of these flows is a simple irrotational flow, and is described in $2. 
Slezkin (1934), Landau (1944) and Squire (1951) have investigated the other flow 
dynamically and have shown that it is generated by a point source of axial 
momentum at the origin. The kinematic properties of this flow are investigated in 
detail in $3 along with the asymptotic behaviour of the flow for both large and small 
strength of the point cause at the origin. 

Throughout $$3 and 4 the conservation principles, for ring circulation and for the 
axial component of moment of whirl, provide a more detailed understanding of the 
local balances in the flow. The flux lines for ring circulation also help to reveal the 
relative importance of the convection, viscous diffusion and viscous convection terms 
in its flux vector J when they are considered along with the streamlines of the flow. 

In all three of the one-parameter problems studied, computer-generated solutions 
and plotted flux lines illustrate and support the analytic and asymptotic results 
detailed. 

(1 -p') f '  +2pf -+ f = ApZ+ Bp+ C ,  
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FIGURE 1. The axial half-plane streamlines for a uniform half-line source of mass. 

2. The conically similar flow generated by a uniform half-line volume 
source 

Since there is no production of ring circulation, this 
irrotational and g(p) = 0. It follows that f(p) is linear in p, 

If there is only a uniform half-line volume source on the lefl 
thenf(1) = 0 and 

one-parameter flow is 
.e. 

half-axis of symmetry, 

where M-, is the constant line density of volume sources on this half-axis. Consequently 
the axial half-plane streamlines (figure 1) form a family of confocal parabolas with 
vertices on the left half-axis of symmetry and with common focus at the origin. A 
change from source to sink flow (i.e. M-, changes from positive to negative) merely 
results in a reversal of the direction of flow, since there is no nonlinearity in 
irrotational flow. 

3. The conically similar flow generated by a point source of the axial 
component of moment of whirl 

This section presents the flow produced by a point source of the axial component 
of moment of whirl, or equivalently by a point source of axial momentum (a point 
force) (Landau 1944; Squire 1951). An understanding of the flow generated by this 
cause provides a necessary component for the synthesis of induced axial helf-plane 
flows which arise when conically similar causes are coupled. The dynamics of 
Landau’s flow have been discussed by Batchelor (1967). In  this paper the kinematic 
viewpoint is emphasized in order to elucidate the role of each term in the ring- 
circulation flux vector. Whilst the rate of production of ring circulation is infinite at 
the origin, the second moment about the axis of symmetry of this production is finite. 
This strength L characterizes the flow and is measured by the axial component of 
moment of whirl emitted radially from the origin. 

In  the one-parameter flow caused solely by a point source of the axial component 
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of moment of whirl at the origin, there is no uniform production of fluid volume along 
the axis of symmetry and no antisymmetric distribution about the origin of moment- 
of-whirl sources. Hence by I (4.4), I (4.5) and I (4.22), 

A + C =  B =  A - C = O .  (3.1) 

The non-dimensional stream function f (p )  governing the flow is thus the solution of 

(l-p”f‘+2pf-if2 = 0, (3.2) 
the simple Riccati equation 

and is (3.3) 

This is the solution given by Landau (1944), Squire (1951) and others. If the edge 
of the jet is taken to be wheref’(pE) = 0, then 

2 
,uE = 1+--2 H sgn(H) (3.4) 

The solution f (p )  is a monotonic increasing function of H (for any fixed p),  and 

0 < f ( p c , H ) < 2 ( 1 + p )  ( O < H < m )  (3.5) 
has, for p E [ - 1,1] ,  

where the linear bounds are attained when H+oo and H+- l+  respectively for 
,UE ( -  1 , l ) .  The strength L of the point source of the axial component of moment 
of whirl is a monotonic increasing function of H, since I (4.19), when rewritten in the 
form 

L = 2nv2 j’ [ ( 3 + 6 )  (2-f’)f--] Pf dp, 
-1 (1-P 1 (3.7) 

indicates that 

> 0. 

The solution f(p) thus increases with L. In the limit as H+oo or H + - l + ,  L+oo 
and L+-  00 respectively. For any given point source strength L of production of 
the axial component of moment of whirl at  the origin, the solutionf(p) is thus unique. 
The simple nature of the solution (3.3) allows the function L(H) to be calculated in 

These results indicate that values of H satisfying - 1 < H < 0 correspond to 
negative values of L. The form of (3.3) shows that these solutions can be placed in 
one-to-one correspondence with those for H > 0. Values of L of opposite sign then 
correspond to flows that are reflections of one another in the plane p = 0 
(f(p, L )  = - f( -p,  - L)).  Without loss of generality, further discussion is restricted 
to L 2 0.  

The solution f (p ,  L) (L + 0) always has a single internal maximum, and the 
non-dimensional ring-circulation density g( p )  is always positive and concentrated in 
the region of outflow. The derivative of f (p )  (the non-dimensional radial velocity) is 
zero at that p where f (p ,  L) = 4p, and no inflexions in f or its derivatives occur. 
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RQWE 2. The non-dimensional stream function f plotted for various strengths L = 2xPI of 

the point source of axial component of moment of whirl. 

FIQWRE 3. The non-dimensional Bernoulli function plotted 
for the same strengths L aa in figure 2. 

When the strength L of production is small the solution (3.3) may be expressed 
as a convergent series in powers of I, where I = L/2nva. The differential equation (3.2) 
then leads to 

JW = ~ I I ( l - p 2 ) + ~ ~ p ( 1 - p 2 ) + ~ ~ ( 1 - - I c 2 )  (Pa-%)+w4). (3.10) 

Here the first-order term is the Stokes-flow solution (convection negligible). The 
second-order term represents the correction to the Stokes-flow solution arising from 
the induced convection field of the Stokes flow itself. 

When L is large the discontinuous limit in (3.3) as L+OO cf(1) = 0, yet the function 
f ( p ,  L) - 2( 1 +p)  on (- 1 , l ) )  indicates the presence of a developing boundary layer. 
Inner and outer solutions are then necessary to describe the solution. The integral 
(3.7) and the differential equation (3.2) show that the outer solution 

(3.11) 

12 FLY 1% 
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FIGURE 4. The axial, half-plane streamlines corresponding to three typical strengths L of the point 
source of the axial component of moment of whirl: (a) L/2nv2 = 1 ; (a) 30; (c) 1OOO. 

then matches with the expansion in the terminating region, 

(3.12) 

where /I = 1 -611 and L = 2nv21. 
For small L, viscous diffusion and convection are the dominant terms in the flux 

vector for ring circulation. They act so as to spread its density g uniformly over 
spheres centred on the point source at the origin, (3.10). Radially, the ring circulation 
density falls off like +. This induces a weak convection field which shifts ring 
circulation from the region of inflow to the region of outflow (f’ = -a& and 
g = aI + &P/I). In this way a second-order amount of ring circulation is concentrated 
in the neighbourhood of the jet. This effect is accentuated as L increases, since g’ is 
positive. When L is large, q is effectively zero in the outer flow (3.1 l) ,  and, to dominant 
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FIQURE 5. The lines of flow of ring circulation in the axial half-plane for the flows 
illustrated in figure 4: (a) L/2rrve = 1 ; ( b )  30; (c) 10oO. 

order, this flow is irrotational, independent of L and is caused by an apparent uniform 
volume sink of line density ~ R V  on the right half-axis of symmetry where p = I .  This 
flow describes the outer effects of entrainment in the jet. There is thus a limit to the 
rate at which the jet can entrain fluid. The terminating solution reveals that the jet 
region lies within a cone with vertex angle O(1-f )  about the right half-axis. The radial 
velocity there is O ( I ) ,  so that, for large I, the amount of fluid entrained by the jet 
is independent of I, aa (3.11) requires. Within the jet, radial convection of ring 
circulation makes the dominant contribution to the rate L at which the axial 
component of moment of whirl is being discharged. 

The streamlines in the axial half-plane for flows in which L is small, moderate and 
large appear in figure 4. These correspond to some of the functionsf(,u) plotted in 
figure 2. 

Further information about the movement of ring circulation is provided by its lines 

12-2 



350 R. Paul1 and A .  F.  Pillow 

of flow in an axial half-plane. Along these lines its flux function, the Bernoulli function 
I (2.14) and I (3.16), is constant. The petal-shaped flow lines of figure 5 are typical 
examples. The nondimensional Bernoulli function /3(p) is plotted in figure 3. The 
function B(p) always has an internal zero, and whenf’( - 1) > 1 an internal minimum 
for /?(p) occurs. 

The zero of the Bernoulli function occurs whenf’ = 0. This serves to define the edge 
of the jet by indicating the direction of the separatrix in the flow of ring circulation. 
In this direction the radial velocity of the fluid is in fact zero, and ring circulation 
is carried away from the singularity at the origin by the dominance of viscous 
diffusion over viscous convection of ring circulation. Transversely, the effects of 
velocity and viscous convection just balance the diffusion of ring circulation. Away 
from this cone, viscous convection eventually sweeps ring circulation towards the axis 
of symmetry, where it is destroyed by the sink on the right-hand side of I (2.3). This 
accounts for the total flux of ring circulation into the axis of symmetry, since there 
is no gradient for ring circulation to diffuse down normal to this axis, and there are 
no line sources of volume present that could provide transverse convection. The rate 
of production of ring circulation at the origin is infinite, but it is totally absorbed 
on the two half-axes of symmetry, since the sink-strength line density there becomes 
infinite like l / r 3  as the origin is approached. The singularity of ring circulation at 
the origin is characterized by the finite size of production L of the axial component 
of moment of whirl. 

In Stokes flow (induced self-convection negligible) ring circulation behaves like heat 
diffusing with diffusivity u in the forced convection field of a uniform volume sink 
on the axis with line density 47cu (figure 5a) .  There is a singularity of heat locally 
resembling a quadrupole at the origin, and all heat is completely removed as it flows 
into the half-axes by line sinks there of line density 47cu2g( f 1)/ I x 13. The second-order 
induced convective flux of ring circulation causes the cone of transverse balance in 
this flow field to tilt over as L increases (figure 5 b ) .  When the axial component of 
moment of whirl production is large, the jet lies within a cone with vertex angle O(I-4) 
(figure 5c) .  Away from this cone the ring-circulation density is O(I- l ) ,  compared with 
a density of order 12 within the jet. 

4. The flow generated by an antisymmetric conically similar distribution 
about the origin of sources of the axial component of moment of whirl 

The remaining independent swirl-free axial cause of conically similar viscous flow 
provided by the classification in 84 of I is the antisymmetric distribution about the 
origin of sources of the axial component of moment of whirl (or axial momentum) 
with line density inversely proportional to the distance from the origin. The 
one-parameter flow associated with this cause has not previously been investigated, 
although it has played a role in some of the solutions obtained previously (e.g. Serrin’s 
(1972) half-space flow with swirl). As with Landau’s flow (§3), this new flow is 
associated with conically similar jets. In  Landau’s case there is a single jet directed 
parallel to the axis of symmetry. Here opposed jets appear about the axis of 
symmetry in accordance with the odd distribution about the origin of Landau’s 
singularity. 

The line density of the distributed production along the axis of the axial component 
of moment of whirl is K/x .  For negative K the jets along the axis generated by this 
ring-circulation production are directed inwards. (Since Klx  is negative on the right 
half-axis if K is negative, this is in qualitative agreement with the results of $3, where 
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negative production of the axial component of moment of whirl at the origin (i.e. 
L < 0) led to a jet directed towards the left.) These opposed jets erupt into a radial 
outflow neighbouring the plane through the origin and normal to the axis of 
symmetry. As K increases in magnitude, this jet becomes more developed. However, 
ring circulation in these circumstances is not confined to a small neighbourhood of 
the ring-circulation causes along the axis of symmetry, since the induced convection 
field, in being parallel to the axis of symmetry, does not oppose ring circulation 
diffusing against the fictitious convection field. Away from the driving cause and the 
jet normal to the axis of symmetry, the flow is not irrotational, but to first order is 
conically similar flow parallel to the axis of symmetry inwards towards the normal 
jet. For positive K the sense of the flow reverses and convection now opposes diffusion 
away from the driving singularity. As K increases, the outward jets surrounding the 
axis of symmetry narrow in width. Convection and diffusion of ring circulation in 
the normal jet are now in unison, and this jet now spreads out to fill almost the whole 
space. The outer flow thus becomes more irrotational in nature until, when K = 327cv2, 
the convection field is sufficiently strong to isolate completely the distributed 
production of the axial component of moment of whirl on the axis from the outside 
flow. The (outer) flow is then potential flow towards an apparent uniform line sink 
of volume with line density 8nv. Strong outward-directed jets along the axis of 
symmetry account for this entrained fluid and herald the non-existence of finite 
solutions for K > 3 2 % ~ ~ .  

The solution for the non-dimensional stream function f(p) can be expressed in a 
closed form involving Legendre functions with the cause strength K specifying their 
order. Since there are to be no uniform half-line volume sources, the constants A + C 
and B in I (4.1) are zero by I (4.4) and I (4.5). The governing differential equation 
is then 

where a boundary condition is provided by the requirement that there be zero 
production L of the axial component of whirl at  the origin. After some integration 
by parts, L = 0 in I (4.19) gives 

(4.1) (1 -p2)fl+ 2pf- i f 2  = C( 1 -p2), 

This last constraint can be simply satisfied by seeking odd solutions to (4.1) (i.e. 
requiringf(0) = 0). The axial component of moment of whirl emitted from the axis 
per unit length per unit time is K / z ,  where 

K = 8nv2C, 
in accord with I (4.22). 

c4 f=- 
f ' 

The substitution 

similar to, but different from, the standard Riccati substitution I (3.11), is the most 
convenient for obtaining the solution for f from (4.1) in closed form. This results in 
Legendre's equation for $ : 

(1 -p2) 4" -2p$' + a(a + 1 )  $ = 0, (4.5) 

with W) = 0 (4.6) 

in order to satisfy (4.2). Here c = 2a(a+ 1). (4.7) 
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where a=-1+(1+2c): .  (4.9) 

The nature of this solution is best analysed by the application of differential- 
inequality techniques to the nonlinear Riccati differential equation (4.1) and to its 
linearized form 

h = 0, (4.10) 
C 

h’’ + iqi 

with h(0) = 1,  h’(0) = 0, (4.11) 

which results from the standard substitution (I (3.11)) 

h’ 
h ’  f = -2(1-p2) - (4.12) 

As C increases from zero, the first eigenfunction with h(1) = 0 in (4.10) is h, = 1 -p2, 
when C = 4 and a = 1.  For C < 4 the solution h of (4.10) and (4.11) has h > 0 on 
[ - 1,1], indicating f is bounded. Even for C = 4, f ( p )  is bounded and equals 4p. For 
C > 4, h has simple internal zeros on [ - 1,1] which increase in number by two each 
time C exceeds a number of the form 2a(a+ l),  with a an odd integer. Such values 
of C give rise to unbounded solutions for f (p )  and are not considered further in this 
paper. 

For C < 4 the non-dimensional stream functionf(p) always has only one internal 
zero, one maximum and one minimum on [- 1,1] .  A single separatrix p = 0 is thus 
always present in the flow. When K < 0 outflow occurs about this separatrix. Inflow 
about the separatrix occurs for K > 0. For K < 32xv2 ( K  = 8xv2C) the solutionf(p) 
has, as p+ f 1, 

and 

f ’ (p )  - -Cp ln- 1+P 
1-P 

(4.13) 

(4.14) 

(4.15) 

A logarithmically stronger flow than occurred in $3 is thus induced about the 
distributed sources of the axial component of moment of whirl along the axis of 
symmetry. 

Asymptotic forms of the solution (4.8) can be obtained for strengths K satisfying 
K < -32xv2, K z 0 and K z 32xv2. When K is small the convergent series 

Cfo C2fi Ff* f = -+-+-+... l !  2! 3! 

reconstructs the solution, where 

(4.16) 

(4.17) 
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and 

(4.18) 

The series (4.16) is convergent for I C I < 4, and the flow it describes is ‘almost-Stokes’ 
flow when I C (  4 4. 

When K 4 -32nv2 the first-order outer solution of (4.1) is given by 

f f t  = - 2C( 1 -y2). (4.19) 

This outer solution is multivalued and does not satisfy either fout(0) = 0 or the 
asymptotic behaviour required of the solution as the axis of symmetry is approached. 
Boundary layers are thus present at  y = 5- 1 and at y = 0, with the latter being in 
the form of a transition between the outer branches. The former will be called 
terminating regions. If 

8 = (-C)-i, (4.20) 

matched asymptotic expansions representing the solution f are 

(4.21) 

in the outer region - 1 < y < 0, 

where y = - 1 + s26, in the terminating region (the KO, K, and K2 are modified Bessel 
functions), and 

where y = €6, in the transition region. The solution f ( p )  is required to be odd about 
the origin. 

The final situation to be discussed occurs when C is large and positive. In this case 
no outer solution, as such, exists and the terminating expansion about p = - 1 is given 
in terms of Bessel functions (as opposed to modified Bessel functions). The denominator 
of the terminating expression then oscillates with increasing frequency as C-t + co . 
This culminates in unbounded solutions for f if C becomes too large. Bounded 
solutions result only when K < 32nv2 (C < 4). In  the special case when C = 4, f(y) 
is bounded but has f( f 1) = f 4 .  The solution f(p) in this case is the solution that 
results from the first-order Legendre polynomial in (4.8); that is, f(y) = 4y. 

The solution corresponding to C = 4 fails to satisfy the homogeneous boundary 
conditions at y = & 1, and indicates the presence of a developing boundary layer as 
8 = 4-C tends to zero from above (i.e. e+O+) .  The method of matched asymptotic 
expansions then yields an outer solution 

($-4y+- 2y +In-) 

18( 1 -p2) 
‘ - -p +0(€3), (4.24) 

1 3 -  1 -y2 3p y+,2 
fout = 4P+€- 1 -y2 
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FIGURE 6. The non-dimensional stream function f plotted for various strengths K = 8nv2C of 
the odd distribution of the axial component of moment of whirl sources. 

FIGURE 7. The ring-circulation distribution in the flows illustrated in figure 6. 

-4  f 
FIGURE 8. The Bernoulli function corresponding to the flows illustrated in figure 6. 

while the expansion in the terminating region about ,u = - 1 (similar to ,u = + 1) is 

where p = - 1 +e[ ,  B = and D = 6. To first order the outer expansion is 
irrotational flow towards an apparent uniform line volume sink of strength 8nv. This 
feeds, by entrainment, an opposed pair of axial jets directed outwards from the origin 
as indicated by (4.25) (cf. (3.12)). Typical non-dimensional stream functions and 
streamlines appear in figures 6 and 9 respectively. 

Whilst this completes the mathematical analysis, the remainder of this section will, 
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FIGURE 9. Axial half-plane streamlines for some typical examples of the strength 
K = 81tv*C: (a) K/2nva = 15.8; (a) - 1 ; (c) - 1200. 

for the sake of physical completeness, explore the behaviour, for large and small C, 
of both the streamlines of volume and the flux lines of circulation, since this throws 
light on the relative strengths of the individual flux terms in the flux vectors for these 
conserved quantities. When the strength of the distributed production of the axial 
component of moment of whirl is small (i.e. I C I < 4) the power-series solution (4.16) 
describes the flow. To first order, ring circulation is concentrated in a neighbourhood 
of the axis of symmetry as a result of viscous convection balancing the normal 
component of viscous diffusion. In contrast with the problem of $3, convection of 
ring circulation is not subdominant in all regions of the flow despite -+j2 in (4.1) 
being subdominant to first order. This is a result of the strong induced radial velocity 
caused by the ring circulation concentrated about the singular source on I p I = 1. This 
effect does not occur in the Landau jet of $3, since no physical supply of ring 
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circulation occurs distributed along the axis of symmetry, in that case. The flow here 
when K is small is thus not everywhere Stokes flow, though that description is valid 
away from the axis of symmetry. The second-order term of (4.16) indicates that the 
convection field of the first-order Stokes flow sweeps ring circulation away from a 
neighbourhood of the axis of symmetry when K is negative and in the opposite sense 
when K is positive. In this way, for negative K ,  ring circulation is transported into 
the jet that erupts from the converging convection fields present about the axis 
of symmetry. (The normal balance of diffusion and viscous convection of ring 
circulation, to the highest order, in the neighbourhood of the axis determines the 
direction of the radial convection field there; that is, g - 2Cp/(l -p2)  implies 
f’ - -Cp In [(l + p ) / ( l  -p ) ] . )  As K (negative) is decreased, more and more ring 
circulation is concentrated in the jet region normal to the axis of symmetry until this 
jet becomes well-developed (C < - 4) and the matched asymptotic expansions 
(4.20)-(4.23) are valid. In  this situation the outer flow is not irrotational flow to first 
order, but rather conically similar flow parallel to the axis of symmetry inwards 
towards the jet normal to the axis of symmetry where it is entrained by an apparent 
conically similar distribution of sinks over the plane p = 0 with area density 
v( - 8C)t /r .  The entrained fluid has radial velocity O( - C) outwards (as given by the 
transition expansion (4.23)). This conserves volume, since the jet lies within cones 
whose semivertex angle differs from ?gt by O[ ( - ($1. 

When K becomes positive the ring-circulation production on the half-axes changes 
sign, and the induced convection field of the outer flow now opposes the diffusion of 
ring circulation from the axis of symmetry. As a result of this action the flow becomes 
almost entirely irrotational and normal to this axis as K-t  32zv2-. When this value 
is attained the convection field completely dominates the effects of diffusion of ring 
circulation, and the (outer) solution is then generated purely by entrainment from 
an apparent uniform line sink of volume of line density 8xv.  The entrant jet, normal 
to axis of symmetry, has now spread out to fill the entire space. Any further decrease 
in K results in unbounded flows with an increased number of cones on which the 
solution is unbounded. Such flows are interesting possibly from a mathematical 
viewpoint and do have applications in certain cone-flow problems with boundaries, 
but are not considered further here. 

The axial half-plane streamlines of three typical flows appear in figure 9. The 
features noted above are clearly visible in these flows. 

The lines of flow for ring circulation are determined by the Bernoulli function 
B = v2/3(p)/r2,  where for the problem of this section 

B(P) = -t“l-P2)91’+’zfs, (4.26) 

= V’(j ’ -2)-C (4.27) 

and 

The flux vector of ring circulation is then 

B’(P) = (1 -j’) 9(P)- (4.28) 

The expression (4.26) displays explicitly the viscosity-dependent fluxes (diffusion and 
viscous convection) grouped into a perfect derivative along with the convective flux, 
and indicates, since g - 2Cp/(l -p2)  as Ip I+ 1, that lateral diffusion of ring 
circulation away from the distributed sources of the axial component of moment of 
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FIGURE 10. Lines of flow of ring circulation when an odd distribution of the axial component of 
moment of whirl sources is present: (a) K/2nv2 = 15.8; (6) - 1 ; (c) - 1200. 

whirl is, to its highest order, balanced by viscous convection. (Convection of ring 
circulation laterally is subdominant to each of these processes.) This accounts for the 
large concentration of ring circulation near the axis of symmetry, which would 
otherwise diffuse outwards. The net rate of ring-circulation production is associated 
with a lower-ordcr mismatch. The second expression for B(p) gives the order of the 
flux of ring circulation at the singularity (/3(p) - !jC? Ina (1 -p) ) ,  though it destroys 
all meaning of the processes that contribute to this flux. Careful examination of the 
first expression reveals that it is diffusion slightly overwhelming viscous convection 
tha t  provides this flow, and not a convective flux as (4.27) might suggest. 

Some typical ring-circulation flux lines are shown in figure 10, while the graphs 
of /3(,u) appear in figure 8. 

Figure 10 indicates that the ring-circulation flux lines always asymptote to the axis 
of symmetry and that their sense here does not alter with a change of sign in K. This 
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is the non-Stokes-flow behaviour resulting from radial convection of ring circulation 
always being significant near the axis of symmetry. The rectification of this flux of 
ring circulation results from the nonlinearity of thc convective flux, while the left-right 
preference for the axial flow is simply a consequence of the anticlockwise-positive 
convention for circulation. 

A flow that is just subcritical appears in figure 10 (a), K x 32xv2. As a consequence 
of an outer potential flow being entrained by the axial jet, the right half of this flow 
strongly resembles figure 5 ( c )  (compare (4.25) with (3.12)) and, except in the 
immediate neighbourhood of the axis, is qualitatively as described in 93 for large L. 
I n  figure 10 (c )  K 4 - 32xv2, and convection of the large ring-circulation density by 
the outer flow inwards parallel to  the axis is now the dominant feature. Collision of 
the outer flows gives rise initially to  a radial flux of ring circulation, but none leaks 
to infinity because of annihilation from the image itself. When almost-Stokes flow 
occurs for 0 > K 2 -4xv2 figure 10(b) demonstrates that' there exist four separatrices 
in the flow of ring circulation because of the delicate transverse balances that can 
develop between convection, viscous convection and diffusion. 
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